mk bổ sung thêm hằng đẳng thức cho các bạn nha .
ta có : \(\left(a+b\right)^{10}=a^{10}+10a^9b+45a^8b^2+120a^7b^3+210a^6b^4+252a^5b^5+210a^4b^6+120a^3b^7+45a^2b^8+10ab^9+b^{10}\)
\(\Rightarrow\left(1+\dfrac{2x}{3}\right)^{10}=1+\dfrac{20x}{3}+20x^2+\dfrac{320x^3}{9}+\dfrac{1120x^4}{27}+\dfrac{896x^5}{27}+\dfrac{4480x^6}{243}+\dfrac{5120x^7}{729}+\dfrac{1280x^8}{729}+\dfrac{5120x^9}{19683}+\dfrac{340x^{10}}{19683}\)
ta thấy hệ số lớn nhất trong khai triển này là \(\dfrac{1120}{27}\)
vậy hệ số lớn nhất trong khai triển \(\left(1+\dfrac{2x}{3}\right)^{10}\) là \(\dfrac{1120}{27}\) .
nhớ hok thuộc hằng đẳng thức mới này nha .