a) Ta có: \(A=3x^2-6x+5\)
\(=3\left(x^2-2x+\frac{5}{3}\right)\)
\(=3\left(x^2-2x+1+\frac{2}{3}\right)\)
\(=3\left(x-1\right)^2+2\)
Ta có: \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow3\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow3\left(x-1\right)^2+2\ge2\forall x\)
Dấu '=' xảy ra khi x-1=0
hay x=1
Vậy: Giá trị nhỏ nhất của biểu thức \(A=3x^2-6x+5\) là 2 khi x=1
b) Ta có: \(4x^2-12x+35\)
\(=4\left(x^2-3x+\frac{35}{4}\right)\)
\(=4\left(x^2-2\cdot x\cdot\frac{3}{2}+\frac{9}{4}+\frac{26}{4}\right)\)
\(=4\left(x-\frac{3}{2}\right)^2+26\)
Ta có: \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow4\left(x-\frac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow4\left(x-\frac{3}{2}\right)^2+26\ge26\forall x\)
\(\Rightarrow4x^2-12x+35\ge26\forall x\)
\(\Rightarrow\frac{5}{4x^2-12x+35}\le\frac{5}{26}\forall x\)
\(\Rightarrow\frac{-5}{4x^2-12x+35}\ge\frac{-5}{26}\forall x\)
Dấu '=' xảy ra khi \(x-\frac{3}{2}=0\)
hay \(x=\frac{3}{2}\)
Vậy: Giá trị nhỏ nhất của biểu thức \(B=-\frac{5}{4x^2-12x+35}\) là \(-\frac{5}{26}\) khi \(x=\frac{3}{2}\)