1,Cho x,y là số thực dương , x lớn hơn hoặc bằng 3y. Tìm GTNN của B=\(\frac{x^3-y}{x^2y}\)
2, Cho x,y là số thực dương, x lớn hơn hoặc bằng 2y.Tìm GTNN của B=\(\frac{x^3-2y^2+2x^2y}{x^2y}\)
Cho x, y, z > 0 thoả mãn : x+y+z=3 . Tìm GTNN của : \(P=\frac{x+1}{1+y^2}+\frac{y+1}{1+z^2}+\frac{z+1}{1+x^2}\)
Tìm gtnn Y=\(\frac{X^3+2X^2-2X-1}{X-1}\)
Cho 3 số thực dương x, y, z thỏa mãn x + y + z = 3. Tìm GTNN của biểu thức:
S = \(\frac{x}{1+y^2}+\frac{y}{1+z^2}+\frac{z}{1+x^2}\)
Cho biểu thức: \(A=\left[\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right).\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{x}+\frac{1}{y}\right]\) \(:\frac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\) \(\left(x>0,y>0\right)\)
a, Rút gọn A
b,Biết \(xy=16\) . Tìm các giá trị của xy để A có GTNN. Tìm GTNN đó.
Cho x,y>0 ; xy = 1 . Tìm GTNN của biểu thức M = \(x^2+y^2+\frac{3}{x+y+1}\)
Cho 2 số dương a,b. Các số dương x,y thay đổi sao cho \(\frac{a}{x}+\frac{b}{y}=1\). Tìm x,y để S=x+y đạt GTNN. Tìm GTNN đó theo a,b
Cho ba số thực x, y, z thỏa mãn x2+y2+z2=3. Tìm GTNN của biểu thức: M=\(\frac{x^2+1}{x}+\frac{y^2+1}{y}+\frac{z^2+1}{z}-\frac{1}{x+y+z}\)
cho x,y>0; x+y=1. Tìm GTNN của: \(\frac{1}{xy}+\frac{1}{x^2+y^2}\)