4.Cho x2 + y2 = 1 .Tìm GTLN,GTNN của A = x + y
1) Tìm số thực x,y,z thõa mãn điều kiện :
\(\sqrt{x}\) + \(\sqrt{y-1}\)+ \(\sqrt{z-2}\) = \(\dfrac{1}{2}\)(x+y+z)
2) Giai phương trình : a) \(\sqrt{3x^2-6x+4}\)+\(\sqrt{2x^2-4x+6}\)=2+2x-x2
b) \(\sqrt{3x^2+6x+12}\)+\(\sqrt{5x^4-10x^2+9}\) =3-4x-2x2
Tìm GTNN của M=(2x-x\(^{^{ }2}\) )(y-2y\(^{^{ }2}\)) với 0≤x≤2; 0≤y≤\(\dfrac{1}{2}\)
bài 1: rút gọn các biểu thức.
a) \(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-(\sqrt{x}-\sqrt{y})^2\)
b) \(\sqrt{\dfrac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}(x\ge0)\)
c) \(\dfrac{x-1}{\sqrt{y}-1}\sqrt{\dfrac{(y-2\sqrt{y}+1)^2}{(x-1)^4}}(x\ne1,y\ne1,y>0)\)
bài 2:rút gọn và tính.
a) \(\sqrt{\dfrac{\sqrt{a}-1}{\sqrt{b}+1}:}\sqrt{\dfrac{\sqrt{b}-1}{\sqrt{a}+1}với}a=7,25;b=3,25\)
b) \(\sqrt{15a^2-8a\sqrt{15}+16}vớia=\sqrt{\dfrac{3}{5}}+\sqrt{\dfrac{5}{3}}\)
c) \(\sqrt{10a^2-4a\sqrt{10}+4}vớia=\sqrt{\dfrac{2}{5}}+\sqrt{\dfrac{5}{2}}\)
d) \(\sqrt{a^2+2\sqrt{a^2-1}}-\sqrt{a^2-2\sqrt{a^2-1}}(a=\sqrt{5})\)
bài 3: rút gọn các biểu thức.
a) \(\sqrt{9(x-5)^2}(x\ge5)\)
b) \(\sqrt{x^2.(x-2)^2}(x< 0)\)
c)\(\dfrac{\sqrt{108x^3}}{\sqrt{12x}}(x>0)\)
d)\(\dfrac{\sqrt{13x^4y^6}}{\sqrt{208x^6y^6}}(x< 0:y\ne0)\)
ai giúp mik vs ạ, cảm ơn !
Bài 1 : Tìm x,y,z
a) \(\sqrt{\frac{5x+7}{x+3}}\)=4
b) x+y+13=\(4\sqrt{x}\)+6√y-1
c) \(3\sqrt{2}\)=√x-√2x-1
d) √x^2+6x+9 =3
Mn giúp mình với ạ
Biết các số thực x,y thỏa mãn : x2+y2=1
Hãy CM: \(-\sqrt{2}\le x+y\le\sqrt{2}\)
Rút gọn biểu thức:
a) \(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\);
b) \(\sqrt{\dfrac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}\) (\(x\ge0\))
c)\(\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{\left(y-2\sqrt{y}+1\right)^2}{\left(x-1\right)^4}}\) (\(x\ne1\), \(y\ne1\), \(y>0\)).
Giari phương trình
1) \(\sqrt{4x^2-4x+1}=5\)
2) \(\sqrt{4x-12}+\dfrac{1}{3}.\sqrt{9x-27}=4+\sqrt{x-3}\)
3) \(\sqrt{4x+8}-\sqrt{9x+18}-2\sqrt{x+2}=21\)
4)\(\left(3-2\sqrt{x}\right).\left(2+3\sqrt{x}\right)=16-6x\)
5)\(\sqrt{x^2-4}-\sqrt{x-2}=0\)
đơn giản biểu thức
a \(\dfrac{3-2\sqrt{2}}{1-\sqrt{2}}\)
b \(\dfrac{x\sqrt{y}-y\sqrt{x}}{x-y}\) (x,y >0)
c \(\dfrac{5\sqrt{16}-\sqrt{15}}{6-2\sqrt{6}}\)
d \(\dfrac{x\sqrt{x}-y\sqrt{y}}{x-y}\) ( x,y>0)