\(\sqrt{-x^2+4x+21}-\sqrt{-x^2+3x+10}=\sqrt{-\left(x^2+4x+4\right)+25}-\)
\(\sqrt{-\left(x^2+3x+\frac{9}{4}\right)+\frac{49}{4}}\ge\sqrt{25}-\sqrt{\frac{49}{4}}=5-\frac{7}{2}=\frac{3}{2}\)
\(\Rightarrow GTNN\) của y = \(\frac{3}{2}\)
ĐKXĐ: \(-2\le x\le5\)
Ta có \(\left(-x^2+4x+21\right)-\left(-x^2+3x+10\right)=x+11>0\) \(\forall x\in\left[-2;5\right]\)
\(\Rightarrow\sqrt{-x^2+4x+21}>\sqrt{-x^2+3x+10}\Rightarrow y>0\)
\(\Rightarrow y^2=\left(\sqrt{\left(7-x\right)\left(x+3\right)}-\sqrt{\left(5-x\right)\left(x+2\right)}\right)^2\)
\(\Rightarrow y^2=-2x^2+7x+31-2\sqrt{\left(x+2\right)\left(7-x\right)\left(x+3\right)\left(5-x\right)}\)
\(\Rightarrow y^2=-x^2+5x+14-x^2+2x+15-2\sqrt{\left(x+2\right)\left(7-x\right)\left(x+3\right)\left(5-x\right)}+2\)
\(\Rightarrow y^2=\left(x+2\right)\left(7-x\right)-2\sqrt{\left(x+2\right)\left(7-x\right)\left(x+3\right)\left(5-x\right)}+\left(x+3\right)\left(5-x\right)+2\)
\(\Rightarrow y^2=\left(\sqrt{\left(x+2\right)\left(7-x\right)}-\sqrt{\left(x+3\right)\left(5-x\right)}\right)^2+2\ge2\)
\(\Rightarrow y_{min}=\sqrt{2}\) khi \(\sqrt{\left(x+2\right)\left(7-x\right)}=\sqrt{\left(x+3\right)\left(5-x\right)}\Rightarrow x=\frac{1}{3}\)