\(A=\frac{2\sqrt{x}+1}{\sqrt{x}-3}+\frac{\sqrt{x}+3}{2-\sqrt{x}}-\frac{10-\sqrt{x}}{x-5\sqrt{x}+6}\)
a, Rút gọn
b, Biết \(B=\frac{x-4\sqrt{x}+20}{A\left(\sqrt{x}-2\right)}\) , tìm gtnn của B
Cho biểu thức: \(P=\frac{x}{x-\sqrt{x}}+\frac{2}{x+2\sqrt{x}}+\frac{x+2}{x\sqrt{x}+x-2\sqrt{x}}+\frac{2\left(x-\sqrt{x}\right)}{\sqrt{x}-1}\)
Tìm x để P > 0, khi đó hãy tìm GTNN của P
\(P=\frac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\frac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}+\frac{\sqrt{x}+3}{3-\sqrt{x}}\)
a, Rút gọn
b, tìm gtnn của P và giá trị tương ứng của x
Cho biểu thức P = \(\frac{x\sqrt{x}+5\sqrt{x}-12}{x-\sqrt{x}-6}-\frac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+2}-\frac{\sqrt{x}+3}{3-\sqrt{x}}\)
a) Tìm ĐKXĐ và rút gọn P
b) Tìm GTNN của P
\(P=\left(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}}{x-1}\right):\left(\frac{2}{x}-\frac{2-x}{x\sqrt{x}+x}\right)\)
a, Rút gọn
b, Để P >2 , tìm x
c, tìm gtnn của \(\sqrt{P}\)
Rút gọn và tìm GTNN của biểu thức:
\(A=\left(\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}\right)+\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)\)
Cho biểu thức: \(P=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
a) Rút gọn P
b) Tìm x để P < \(\frac{1}{2}\)
c) Tìm GTNN của P
cho biểu thức P=\(\left(1-\frac{\sqrt{x}}{1+\sqrt{x}}\right)\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\)
với x≥0; x≠4; x≠9
1, rút gọn P
2, tìm tất cả các giá trị nguyên của x để P<0
3, tìm GTNN của P
Cho P = \(\left(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}}{x-1}\right):\left(\frac{2}{x}-\frac{2-x}{x\left(\sqrt{x}+1\right)}\right)\)
a) rút gọn P
b) tính giá trị của P khi x =\(\frac{2}{2-\sqrt{3}}-2\sqrt{3}\)
c) khi \(\sqrt{P}\) có nghĩa, hãy tìm GTNN của \(\sqrt{P}\)