a) Ta có: \(P=\left(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}}{x-1}\right):\left(\frac{2}{x}-\frac{2-x}{x\left(\sqrt{x}+1\right)}\right)\)
\(=\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{2\left(\sqrt{x}+1\right)-2+x}{x\left(\sqrt{x}+1\right)}\right)\)
\(=\frac{x+\sqrt{x}+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\frac{2\sqrt{x}+2-2+x}{x\left(\sqrt{x}+1\right)}\)
\(=\frac{x+2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\frac{x\left(\sqrt{x}+1\right)}{x+2\sqrt{x}}\)
\(=\frac{x}{\sqrt{x}-1}\)
b) ĐKXĐ: \(0< x\ne1\)
Ta có: \(x=\frac{2}{2-\sqrt{3}}-2\sqrt{3}\)
\(=\frac{2\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}-2\sqrt{3}\)
\(=4+2\sqrt{3}-2\sqrt{3}\)
=4(nhận)
Thay x=4 vào biểu thức \(P=\frac{x}{\sqrt{x}-1}\), ta được:
\(P=\frac{4}{\sqrt{4}-1}=\frac{4}{2-1}=4\)
Vậy: khi \(x=\frac{2}{2-\sqrt{3}}-2\sqrt{3}\) thì P=4
a)\(P=\frac{\sqrt{x}\left(\sqrt{x}+1\right)+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}:\frac{2\left(\sqrt{x}+1\right)-2+x}{x\left(\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{x\left(\sqrt{x}+1\right)}\)
\(=\frac{x-4}{\sqrt{x}\left(x-1\right)}\)
b)\(x=\frac{2-2\sqrt{3}\left(2-\sqrt{2}\right)}{2-\sqrt{3}}=\frac{8-4\sqrt{3}}{2-\sqrt{3}}=\frac{\left(2-\sqrt{3}\right)^2}{2-\sqrt{3}}=2-\sqrt{3}\)