Tìm x biết :
a) \(\left(x-2\right)^3+6\left(x+1\right)^2-x^3+12=0\)
b) \(\left(x-5\right)\left(x+5\right)-\left(x+3\right)^3+3\left(x-2\right)^2=\left(x+1\right)^2-\left(x+4\right)\left(x-4\right)+3x^2\)
c) \(\left(2x+3\right)^2+\left(x-1\right)\left(x+1\right)=5\left(x+2\right)^2-\left(x-5\right)\left(x+1\right)+\left(x+4\right)^2\)
d) \(\left(1-3x\right)^2-\left(x-2\right)\left(9x+1\right)=\left(3x-4\right)\left(3x+4\right)-9\left(x+3\right)^2\)
Chia đa thức cho đơn thức
a) \(\left(-2\right)^5:\left(-2\right)^3\)
b) \(\left(-y\right)^7:\left(-y\right)^3\)
c) \(x^{12}:\left(-x^{10}\right)\)
d) \(\left(2x^6\right):\left(2x\right)^3\)
e) \(\left(-3x\right)^5:\left(-3x\right)^2\)
f) \(\left(xy^2\right)^4:\left(xy^2\right)^2\)
i) \(\left(x+2\right)^9:\left(x+2\right)^6\)
Cho biểu thức:
A\(=\left(\dfrac{\left(x+1\right)^2}{\left(x+1\right)^2-3x}-\dfrac{2x^2+4x-1}{x^3+1}-\dfrac{1}{x+1}\right):\dfrac{x^2-4}{3x^2+6x}\)
a/ Rút gọn A
b/ Tìm x ∈ Z để A nguyên
Tìm GTNN
B=\(x^2+6x+5\)
A=\(4x^2+4x+11\)
C=\(3x^2-6x-1\)
D=\(\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)
E=\(x^2-2x+y^2-4y+6\)
Rút gọn các biểu thức :
a, \(\left(3x+5\right)^2+\left(3x-5\right)^2-\left(3x+2\right)\left(3x-2\right)\)
b, \(2x\left(2x-1\right)^2-3x\left(x+3\right)\left(x-3\right)-4x\left(x+1\right)^2\)
\(c,\left(x+y-z\right)^2+2\left(z-x-y\right)\left(x+y\right)+\left(x+y\right)^2\)
Thực hiện phép tính:
a) \(2x.\left(2x^2+3x-1\right)\)
b) \(\left(x+5\right).\left(2x-3\right)\)
c) \(\left(x+1\right)^2-x\left(2+3x\right)\)
d) \(\left(2x^3+x^2-8x+3\right):\left(2x-3\right)\)
a) \(f\left(x\right)=29x^7+x^6-3x^4+15x^3+105x^2-37x+83\). Tính tổng các hệ số của nó
b) \(B=\left(4-5x^2+x^3\right)^4.\left(4+5x^2+x^3\right)^{10}\). Tìm tổng các hệ số của B sau khi bỏ ngoặc
Tìm x, biết:
a) \(\left(2x+3\right)\left(x-4\right)+\left(x-5\right)\left(x-2\right)=\left(3x-5\right)\left(x-4\right)\)
b) \(\left(8x-3\right)\left(3x+2\right)-\left(4x+7\right)\left(x+4\right)=\left(2x+1\right)\left(5x-1\right)\)
c) \(\left(3x-5\right)\left(7-5x\right)-\left(5x+2\right)\left(2-3x\right)=4\)
Tìm GTNN
\(A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)