Đại số lớp 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyen Thi Thanh Thao

Tìm GTNN của các biểu thức :

a ) \(A=\left|x-1\right|+\left|x-2\right|+2016\)

b ) \(B=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\)

Trần Minh Hưng
24 tháng 2 2017 lúc 20:36

a) Ta có:

\(\left|x-1\right|+\left|x-2\right|=\left|x-1\right|+\left|2-x\right|\)

\(\Rightarrow\left|x-1\right|+\left|x-2\right|\ge\left|x-1+2-x\right|\)

\(\Rightarrow\left|x-1\right|+\left|x-2\right|+2016\ge\left|x-1+2-x\right|+2016\)

hay \(A\ge\left|1\right|+2016=1+2016=2017\)

=> \(A\ge2017\)

Dấu "=" xảy ra khi \(\left[\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=1\\x=2\end{matrix}\right.\)

Vậy với \(x\in\left\{1;2\right\}\) thì A đạt GTNN và A=2017.

Trần Minh Hưng
24 tháng 2 2017 lúc 20:44

b) Ta có:

\(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|=\left|x-1\right|+\left|x-2\right|+\left|3-x\right|\)

hay \(B=\left|x-1\right|+\left|x-2\right|+\left|3-x\right|\ge\left|x-1+x-2+3-x\right|\)

\(\Rightarrow B\ge\left|x\right|\)

Dấu "=" xảy ra khi \(\left[\begin{matrix}x-1=0\\x-2=0\\x-3=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=1\\x=2\\x=3\end{matrix}\right.\) (1)

Để B nhỏ nhất

=> |x| phải nhỏ nhất (2)

Từ (1) và (2)

=> x=1

khi đó:

B=|x|=|1|=1

Vậy với x=1 thì B đạt GTNN và B=1.

Thọ Nguyễn
26 tháng 10 2016 lúc 13:03

gtnn a là 2017 khi x=1 hoặc x=2

gtln b là 2 khi x=2

Thọ Nguyễn
26 tháng 10 2016 lúc 13:03

gtnn a là 2017 khi x=1 hoặc x=2

gtnn b là 2 khi x=2

 


Các câu hỏi tương tự
Nguyen Thi Thanh Thuy
Xem chi tiết
Bảo Trâm
Xem chi tiết
chíp chíp
Xem chi tiết
Trang
Xem chi tiết
Uzumaki Naruto
Xem chi tiết
Nguyễn Thị Thùy Linh
Xem chi tiết
chíp chíp
Xem chi tiết
Nguyễn Thị Bình Yên
Xem chi tiết
Học sinh
Xem chi tiết