M=\(a^2+ab+b^2-3a-3b+2001\)
<=>2M=\(\left(a^2+b^2+4+2ab-4a-4b\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+3996\)
=\(\left(a+b-2\right)^2+\left(a-1\right)^2+\left(b-1\right)^2+3996\ge0+0+0+3996\)
<=> \(2M\ge3996\)
<=>M\(\ge1998\)
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}a+b=2\\a=1\\b=1\end{matrix}\right.\)(t/m)
Vậy minM=1998 <=>a=b=1
Ta có :
\(M=a^2+ab+b^2-3a-3b+2001\)
\(\Leftrightarrow2M=2a^2+2ab+2b^2-6a-6b+4002\)
\(\Leftrightarrow2M=\left(a^2+2ab+b^2\right)-4\left(a+b\right)+4+\left(a^2-2a+1\right)+\left(b^2-2a+1\right)+3996\)
\(\Leftrightarrow2M=\left(a+b\right)^2-4\left(a+b\right)+4+\left(a-1\right)^2+\left(b-1\right)^2+3996\)
\(\Leftrightarrow2M=\left(a+b-2\right)^2+\left(a-1\right)^2+\left(b-1\right)^2+3996\)
Với mọi a,b ta có :
\(\left\{{}\begin{matrix}\left(a+b-2\right)^2\ge0\\\left(a-1\right)^2\ge0\\\left(b-1\right)^2\ge0\end{matrix}\right.\)
\(\Leftrightarrow2M\ge3996\Leftrightarrow M\ge1998\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=1\)
Vậy...