- Ta có đồ thị hàm số :
- Theo đồ thị hàm số : Min = 0 tại x = 0 .
- Ta có đồ thị hàm số :
- Theo đồ thị hàm số : Min = 0 tại x = 0 .
a) Tam thức \(f\left(x\right)=x^2+2\left(m-1\right)+m^2-3m+4\) không âm với mọi giá trị x
b) Có bao nhiêu giá trị nguyên của tham số m để mọi x thuộc R biểu thức \(f\left(x\right)=x^2+\left(m+2\right)x+8m+1\) luôn nhận giá trị dương
c) Tìm tất cả các giá trị m để biểu thức \(f\left(x\right)=x^2+\left(m+1\right)x+2m+7>0\forall x\in R\)
Bài 1: Tìm m để \(f\left(x\right)=mx^2-2\left(m-1\right)x+4m\) luôn luôn âm.
Bài 2: Tìm tất cả các giá trị của tham số m để bất phương trình \(\dfrac{-x^2+2x-5}{x^2-mx+1}\le0\)nghiệm đúng với mọi \(x\in R\)
Bài 3: Cho hàm số \(f\left(x\right)=-x^2-2\left(m-1\right)x+2m-1\). Tìm tất cả các giá trị của tham số m để \(f\left(x\right)>0,\forall x\in\left(0;1\right)\)
1. Tìm hàm f: \(R\rightarrow R\) thỏa mãn điều kiện
a) \(f\left(x^2+f\left(y\right)\right)=y+x.f\left(x\right),\forall x,y\in R\)
b) \(f\left(\left(x+1\right).f\left(y\right)\right)=f\left(y\right)+y.f\left(x\right),\forall x,y\in R\)
c) \(f\left(x^3+f\left(y\right)\right)=x^2f\left(x\right)+y,\forall x,y\in R\)
d) \(\left\{{}\begin{matrix}f\left(x+y\right)=f\left(x\right)+f\left(y\right)\\f\left(xy\right)=f\left(x\right).f\left(y\right)\end{matrix}\right.\)
2. Cho A có n phần tử. Với \(r\in Z^+\), gọi \(f\left(r;n\right)\) là số cách chọn ra k tập con của A sao cho các tập con này không có phần tử chung. Tính \(f\left(r;n\right)\) theo n biết
a) r = 1
b) r = 2
c) r = 3
d) r bất kì
3. Cho \(A=\left\{1;2;3;...;n\right\}\). Với mỗi tập X, kí hiệu m(X) là trung bình cộng các phần tử của X. Gọi S là tập các tập con khác tập rỗng của A. T = {m(X)/ \(X\in S\)}
Tính m(T)
m.n giúp với mk đang cần gấp
Hung nguyen Ace Legona Akai Haruma
Tìm m thỏa mãn
a) \(\left(m+1\right)x^2-2\left(m+1\right)x+4\ge0\) có tập nghiệm S=R
b) \(\left(m+1\right)x^2-2mx-\left(m-3\right)< 0\) vô nghiệm
c) \(f\left(x\right)=-x^2+2x+m-2018< 0\forall x\in R\)
d) \(f\left(x\right)=mx^2-2\left(m-1\right)x+4m\) luôn luôn âm
tìm tất cả các giá trị của tham số m để bpt \(\left(x^2+4x+3\right)\left(x^2+4x+6\right)\ge m\) có nghiệm đúng với mọi x thuộc R
Cho x, y, z là các số thực thuộc (0;1) thỏa mãn điều kiện \(\left(x^3+y^3\right)\left(x+y\right)=xy\left(1-x\right)\left(1-y\right)\)
Tìm giá trị lớn nhất của biểu thức \(P=\frac{1}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}+3xy-\left(x^2+y^2\right)\)
\(\left\{{}\begin{matrix}x^3-y^3+3y^2+x-4y+2=0\\x^3+x-3=2\sqrt{x+2}+y\end{matrix}\right.\) \(\left(x,y\in R\right)\)
Giải hệ phương trình:
\(\left\{{}\begin{matrix}x+y+\sqrt{x+y+3}=\left(x+y\right)^2+2\sqrt{x+y}\\\sqrt{x^2+x+y+2}+\sqrt{x-y}=3\end{matrix}\right.\left(x,y\in R\right)\)
Cho x,y là nghiệm của hệ phương trình \(\left\{{}\begin{matrix}x+y=2m-1\\x^2+y^2=m^2+2m-3\end{matrix}\right.\). Tìm m để P=xy đtạ GTNN