\(C=2x^2+4y^2+4xy-3x-1\)
\(=\left(x^2+4xy+4y^2\right)+\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{13}{4}\)
\(=\left(x+2y\right)^2+\left(x-\dfrac{3}{2}\right)^2-\dfrac{13}{4}\)
Ta có : \(\left\{{}\begin{matrix}\left(x+2y\right)^2\ge0\\\left(x-\dfrac{3}{2}\right)^2\ge0\end{matrix}\right.\) \(\Leftrightarrow P\ge-\dfrac{13}{4}\)
Dấu "=" xảy ra khi :
\(\left\{{}\begin{matrix}\left(x+2y\right)^2=0\\\left(x-\dfrac{3}{2}\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=-\dfrac{3}{4}\end{matrix}\right.\)
Vậy \(C_{Min}=-\dfrac{13}{4}\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=-\dfrac{3}{4}\end{matrix}\right.\)
C= 2x2 +4y2+4xy -3x -1
Mk viết nhầm đề các bạn thông cảm nhé