A=\(\frac{2}{1-x}+\frac{1}{x} \)
=\(\frac{2}{1-x}-2+\frac{1}{x}-1+3 \)
=\(\frac{2x}{1-x} +\frac{1-x}{x}+3\)
Áp dụng BĐT AM-GM ta có:
A\(\ge\)\(2\sqrt{2}+3\)
Dấu "="xảy ra <=>x=\(\sqrt{2}-1 \)
Theo BĐT Cauchy dạng phân thức
\(A=\dfrac{2}{1-x}+\dfrac{1}{x}\ge\dfrac{\left(\sqrt{2}+1\right)^2}{1-x+x}=\left(\sqrt{2}+1\right)^2=3+2\sqrt{2}\)
Đẳng thức xảy ra \(\Leftrightarrow\dfrac{\sqrt{2}}{1-x}=\dfrac{1}{x}\Leftrightarrow x=\sqrt{2}-1\)