Tìm GTNN của A=\(\dfrac{x^2}{x+y}+\dfrac{y^2}{y+z}+\dfrac{z^2}{z+x}biếtx,y,z>0,\sqrt{xy}+\sqrt{yz}+\sqrt{xz}=1\)
Cho x,y,z>0. CM: \(\dfrac{xy}{z^2\left(x+y\right)}+\dfrac{yz}{x^2\left(y+z\right)}+\dfrac{zx}{y^2\left(z+x\right)}\ge\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)
Cho x,y,z >0 tm x+y+z=3
C/m :\(\dfrac{x^3}{y^3+8}+\dfrac{y^3}{z^3+8}+\dfrac{z^3}{x^3+8}\ge\dfrac{1}{9}+\dfrac{2}{27}\left(xy+yz+zx\right)\)
1)ghpt \(\left\{{}\begin{matrix}2x^2-y^2-xy-x-y=0\\\sqrt{2x+y-2}+2-2x=0\end{matrix}\right.\)
2)cho x,y,z dương thỏa xy+yz+zx=1
tìm MIN S=\(\dfrac{1}{4x^2-yz+2}+\dfrac{1}{4y^2-zx+2}+\dfrac{1}{4z^2-xy+2}\)
cho x,y,z dương thỏa \(x^2+y^2+z^2=3\)
C/M \(\dfrac{x}{3-yz}+\dfrac{y}{3-zx}+\dfrac{z}{3-xy}\le\dfrac{3}{2}\)
Cho 3 số x y z thỏa mãn x+y+z=xyz.Cm:\(\dfrac{\sqrt{\left(1+y^2\right)\left(1+z^2\right)}-\sqrt{1+y^2}-\sqrt{1+z^2}}{yz}+\dfrac{\sqrt{\left(1+z^2\right)\left(1+x^2\right)}-\sqrt{1+z^2}-\sqrt{1+x^2}}{zx}+\dfrac{\sqrt{\left(1+x^2\right)\left(1+y^2\right)}-\sqrt{1+x^2}-\sqrt{1+z^2}}{yz}=0\)
cho x,y,z là các số thực dương thỏa mãn : xy+yz+zx=2016
c/m : \(\sqrt{\dfrac{yz}{x^2+2016}}+\sqrt{\dfrac{xy}{y^2+2016}}+\sqrt{\dfrac{xz}{z^2+2016}}\le\dfrac{3}{2}\)
Cho x,y,z là ba số dương thỏa mãn điều kiện \(x^2+y^2+z^2=2016\)
Tìm giá trị nhỏ nhất của P = \(\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{zx}{y}\)
Với các số dương x,y,z thỏa mãn \(\dfrac{1}{xy}\)+\(\dfrac{1}{yz}\)+\(\dfrac{1}{xz}\)=1
Tính giá trị lớn nhất của Q=\(\dfrac{x}{\sqrt{yz\left(1+x^2\right)}}\)+\(\dfrac{y}{\sqrt{xz\left(1+y^2\right)}}\)+\(\dfrac{z}{\sqrt{xy\left(1+z^2\right)}}\)