Đặt \(A=4x^4+12x^2+11\)
Ta có \(\left\{{}\begin{matrix}x^4\ge0\\x^2\ge0\end{matrix}\right.\) ; \(\forall x\)
\(\Rightarrow4x^4+12x^2\ge0;\forall x\)
\(\Rightarrow4x^4+12x^2+11\ge11;\forall x\)
\(\Rightarrow A_{min}=11\) khi \(x=0\)
Ta có: \(4x^4\ge0\forall x\)
\(12x^2\ge0\forall x\)
Do đó: \(4x^4+12x^2\ge0\forall x\)
\(\Leftrightarrow4x^4+12x^2+11\ge11\forall x\)
Dấu '=' xảy ra khi x=0