\(x^2+5y^2-4x+2xy-8y+2022\\ =x^2+y^2+4y^2-4x+2xy-4y-4y+4+1+2017\\ =\left(x^2+2xy+y^2\right)-\left(4x+4y\right)+4+\left(4y^2-4y+1\right)+2017\\ =\left(x+y\right)^2-4\left(x+y\right)+4+\left(2y-1\right)^2+2017\\ =\left[\left(x+y\right)^2-4\left(x+y\right)+4\right]+\left(2y-1\right)^2+2017\\ =\left(x+y-2\right)^2+\left(2y-1\right)^2+2017\\ Do\text{ }\left(2y-1\right)^2\ge0\forall y\\ \left(x+y-2\right)^2\ge0\forall x;y\\ \Rightarrow\left(x+y-2\right)^2+\left(2y-1\right)^2\ge0\forall x;y\\ \Rightarrow\left(x+y-2\right)^2+\left(2y-1\right)^2+2017\ge2017\forall x;y\\ Dấu\text{ }"="\text{ }xảy\text{ }ra\text{ }khi:\left\{{}\begin{matrix}\left(2y-1\right)^2=0\\\left(x+y-2\right)^2=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2y-1=0\\x+y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2y=1\\x+y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{1}{2}\\x+\dfrac{1}{2}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{1}{2}\\x=\dfrac{3}{2}\end{matrix}\right.\\ Vậy\text{ }GTNN\text{ }của\text{ }biểu\text{ }thức\text{ }là:\text{ }2017\text{ }khi\text{ }\left\{{}\begin{matrix}y=\dfrac{1}{2}\\x=\dfrac{3}{2}\end{matrix}\right.\)