a ) \(M=a^3+b^3+ab\) biết \(a+b=1\)
\(M=\left(a+b\right)\left(a^2-ab+b^2\right)+ab\)
\(M=a^2-ab+b^2+ab\)
\(M=a^2+b^2\)
Ta có : \(\left(a-b\right)^2\ge0\)
\(\Rightarrow a^2+b^2\ge2ab\)
\(\Rightarrow2\left(a^2+b^2\right)\ge a^2+2ab+b^2=\left(a+b\right)^2=1\)
\(\Rightarrow a^2+b^2\ge\frac{1}{2}\)
Vậy \(Min_M=\frac{1}{2}\Leftrightarrow a=b=\frac{1}{2}\).
b ) \(N=\left(x^2+x\right)\left(x^2+x-4\right)=\left[\left(x^2+x-2\right)+2\right]\left[\left(x^2+x-2\right)-2\right]=\left(x^2+x-2\right)^2-4\ge-4\)
Vậy \(Min_N=-4\)\(\Leftrightarrow x^2+x-2=0\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=-2\end{array}\right.\).