a. A=\(\dfrac{-2}{x^{2^{ }}-2x+5}\)= \(\dfrac{-2}{\left(x-1\right)^{2^{ }}+4}\)
Ta có: (x-1) 2 ≥ 0 với mọi x
⇔ (x- 1)2 +4 ≥4
⇔ \(\dfrac{-2}{\left(x-1\right)^{2^{ }}+4}\)≤ \(\dfrac{-2}{4}\) = \(\dfrac{-1}{2}\)
Dấu''='' xảy ra ⇔ x-1=0
⇔x=1
Vậy maxA= -0,5 ⇔ x=1
b. B=\(\dfrac{3}{x^{2^{ }}-2x+1}\)=\(\dfrac{3}{\left(x-1\right)^2}\)
Ta có: (x-1)2 ≥ 0 với mọi x
⇔ \(\dfrac{3}{\left(x-1\right)^2}\)≤0