Lời giải:
Ta có: \(Q=\frac{2x^2-4x+10}{x^2-2x+3}=\frac{2(x^2-2x+3)+4}{x^2-2x+3}\)
\(=2+\frac{4}{x^2-2x+3}=2+\frac{4}{(x-1)^2+2}\)
Ta thấy: \((x-1)^2\geq 0, \forall x\in \mathbb{R}\Rightarrow (x-1)^2+2\geq 2\)
\(\Rightarrow \frac{4}{(x-1)^2+2}\leq \frac{4}{2}=2\)
\(\Rightarrow Q=2+\frac{4}{(x-1)^2+2}\leq 2+2=4\)
Vậy GTLN của $Q=4$ khi \((x-1)^2=0\Leftrightarrow x=1\)