B =
= -(x2-3x-1)
= -\(\left(x^2-3x+\dfrac{9}{4}-\dfrac{5}{4}\right)\)
= -\(\left[\left(x-\dfrac{3}{2}\right)^2-\dfrac{5}{4}\right]\)
= \(-\left(x-\dfrac{3}{2}\right)^2+\dfrac{5}{4}\)
do \(-\left(x-\dfrac{3}{2}\right)^2\le0\forall x\)
⇔\(-\left(x-\dfrac{3}{2}\right)^2+\dfrac{5}{4}\le\dfrac{5}{4}\)
⇔B ≤ \(\dfrac{5}{4}\)
Max A =\(\dfrac{5}{4}\) dấu "=" xảy ra khi \(x-\dfrac{3}{2}=0\Leftrightarrow x=\dfrac{3}{2}\)
vậy GTLN A = \(\dfrac{5}{4}\) khi x= \(\dfrac{3}{2}\)