Ta có: \(A=3-2\left(3x+1\right)^2\le3\)
Dấu " = " khi \(2\left(3x+1\right)^2=0\Leftrightarrow x=\dfrac{-1}{3}\)
Vậy \(MIN_A=3\) khi \(x=\dfrac{-1}{3}\)
Ta có: \(2\left(3x+1\right)^2\ge0\forall x\)
\(\Rightarrow-2\left(3x+1\right)^2\le0\forall x\)
\(\Rightarrow3-2\left(3x+1\right)^2\le3\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow3x+1=0\Rightarrow x=\dfrac{-1}{3}\)
Vậy MAX \(3-2\left(3x+1\right)^2=3\Leftrightarrow x=\dfrac{-1}{3}\)