Bài 1: Rút gọn hoặc tính giá trị các biểu thức:
a) x + \(\sqrt{\left(x-2\right)^2}\) với x < 2
b) \(\sqrt{\left(x-3\right)^2}\) - x với x > 3
c) m - \(\sqrt{m^2-2m+1}\) với m > 1
d) x + y - \(\sqrt{x^2-2xy+y^2}\) với x > y >0
e) \(\sqrt{1-10a+25a^2}\) - 4a tại a = \(\dfrac{1}{2}\)
f) \(\sqrt{4a^2-12a+9}\) - 4a - 1 tại a = -5
Cho hàm số y=(m2-2m+3)x-4 (d) ,(với m là tham số)
1.Chứng minh rằng với mọi hàm số luôn đồng biến trên tập xác định của nó.
2.Tìm m để (d) đi qua A(2;8)
3.Tìm m để (d) song song với đường thẳng (d'):y=3x +m-4
Tính giá trị biểu thức: A=√a2+4ab2+4b2−√4a2−12ab2+9b2 với a=√2;b=1
GIÚP MÌNH VỚI M.N!!~~~~
Tìm giá trị nhỏ nhất của \(\dfrac{1}{x-\sqrt{x}-2}\)
Tìm giá trị nhỏ nhất của biểu thức : x/ (căn x - 1)
A= x+1- (2x-2 căn x)/(căn x-1) + (x căn x+1)/ (x- căn x +1) rut gọn, tìm giá trị nhỏ nhất của A
Cho \(\text{a,b,c,d }\ge1\) thỏa mãn abcd=4.Tìm giá trị nhỏ nhất :
\(P=\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}+\dfrac{1}{1+d}\)
cho a,b,c là các số thực thỏa mãn a,b≥0;0≤c≤1 và a2+b2+c2 =3.Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P=ab+bc+ca+3(a+b+c)
Rút gọn và tính giá trị của biểu thức:
A = \(\sqrt{-8a}\) - \(\sqrt{4a^2-4a+1}\) với a =\(\dfrac{-1}{2}\)