đk : \(x\ge1\)
pt \(\Leftrightarrow x=m-2\)
pt có nghiệm \(m-2\ge1\Leftrightarrow m\ge3\)
vậy min m = 3
đk : \(x\ge1\)
pt \(\Leftrightarrow x=m-2\)
pt có nghiệm \(m-2\ge1\Leftrightarrow m\ge3\)
vậy min m = 3
Cho hai phương trình \(\sqrt{x-6}\)+ x3-6x2+x-6=0(1) và \(\dfrac{x^2-2\left(m+1\right)x+6m-2}{\sqrt{x-2}}\)=\(\sqrt{x-2}\)(2) (m là tham số). Số các giá trị của tham số m để phương trình (2) là phương trình hệ quả của phương trình (1).
A.0 B.1 C.2 D.3
Tìm các giá trị của tham số m để phương trình sau có nghiệm thực: \(m\left(x+4\right)\sqrt{x^2+2}=5x^2+8x+24\)
(Em cần lời giải chi tiết ạ! Cảm ơn mọi người)
Câu 1: Tập hợp các giá trị thực của tham số m để phương trình \(\sqrt{x^2+2x+2m}=2x+1\) có hai nghiệm phân biệt là S = (a;b]. Khi đó P = a.b là....
Câu 2: Cho phương trình \(\sqrt{-x^2+4x-3}=\sqrt{2m+3x-x^2}\). Để phương trình có nghiệm thì m ϵ [a;b]. Giá trị \(a^2+b^2=?\)
Câu 3: Biết phương trình \(x^4-3mx^2+m^2+1=0\) có 4 nghiệm phân biệt \(x_1,x_2,x_3,x_4\). Tính M = x1+x2+x3+x4+x1x2x3x4
Cho phương trình: 3\(\sqrt{x^2-2x+3}\) =x2-2x+m với tham số m∈R.Tìm tất cả các giá trị của tham số m để phương trình đã cho có đúng hai nghiệm phân biệt thuộc đoạn 0,3
Tìm tham số m để hệ phương trình sau có nghiệm thực:
\(\begin{cases}X\sqrt{Y}+Y\sqrt{X}+2\left(\sqrt{X}+\sqrt{Y}\right)=12\sqrt{XY}\\X+2\sqrt{Y}+4\left(\frac{1}{X}+\frac{1}{\sqrt{Y}}\right)=m\left(\frac{X+2}{\sqrt{X}}\right)\end{cases}\)
Biết rằng tập hợp các giá trị của tham số m để phương trình : \({x^2} - 2x - \sqrt {x + m} = m\) có nghiệm duy nhất là \(\left\{ {\left. { - \frac{a}{b}} \right\} \cup ( - c;d)} \right.\), với a,b,c,d là các số tự nhiên và \(\frac{a}{b}\) là phân số tối giản. Giá trị biểu thức \(\begin{array}{l} S = a + 2b + 3c + 4d\\ \end{array}\) là ?
tìm m để phương trình \(\sqrt{x^2+x+1}-\sqrt{x^2-x+1}=m\) có nghiệm