Bài 1:
a,\(P=x^2-2x+5=x^2-x-x+1+4=\left(x-1\right)^2+4\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+4\ge4\)
hay \(P\ge4\) với mọi giá trị của \(x\in R\).
Để \(P=4\) thì \(\left(x-1\right)^2+4=4\)
\(\Rightarrow x-1=0\Rightarrow x=1\)
Vậy..............
b, Tương tự a.
c, \(M=x^2+y^2-x+6y+10\)
\(M=x^2-\dfrac{1}{2}x-\dfrac{1}{2}x+\dfrac{1}{4}+y^2+3y+3y+9+\dfrac{3}{4}\)
\(M=\left(x^2-\dfrac{1}{2}x-\dfrac{1}{2}x+\dfrac{1}{4}\right)+\left(y^2+3y+3y+9\right)+\dfrac{3}{4}\)
\(M=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2\ge0\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
hay \(M\ge\dfrac{3}{4}\) với mọi giá trị của \(x\in R\).
Để \(M=\dfrac{3}{4}\)thì
\(\left\{{}\begin{matrix}x-\dfrac{1}{2}=0\\y+3=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)
Vậy......................
Bài 2:
a, \(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-2x-2x+4-7\right)\)
\(=-\left[\left(x-2\right)^2-7\right]\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2-7\ge-7\)
\(\Rightarrow-\left[\left(x-2\right)^2-7\right]\le7\)
hay \(A\le7\) với mọi giá trị của \(x\in R\).
Để \(A=7\)thì \(\left(x-2\right)^2=0\)
\(\Rightarrow x=2\)
Vậy..................
b,c làm tương tự!
Chúc bạn học tốt!!!