a) Tìm giá trị nhỏ nhất của biểu thức: S= \(\dfrac{5x^4+4x^2+10}{x^4+2}\)
b) Tìm giá trị lớn nhất của biểu thức: T=\(\dfrac{2x^4-4x^2+8}{x^4+4}\)
c) Cho a là hằng số và a>0. Tìm giá trị nhỏ nhất của biểu thức: M=\(\dfrac{8y^8+2a\left(y-3\right)^2+2a^2}{4y^8+a^2}\)
tìm \(x\in Z\) để các biểu thức sau có giá trị lớn nhất và có giá trị nhỏ nhất :
1)A = \(\dfrac{1}{7-x}\) 2) B = \(\dfrac{8-x}{x-3}\)
3) C = \(\dfrac{27-2x}{12-x}\)
Tìm giá trị nhỏ nhất hoặc lớn nhất của các biểu thức sau :
a) \(A=\left|x-2017\right|+\left|x-2018\right|\)
b) \(B=\dfrac{x^2+12}{x^2+4}\)
Bài 8 :
1 . Tìm giá trị lớn nhất của các biểu thức .
a. B = - ( x + 18/1273 ) - 183/124 .
b. C = 15/( x - 8)² + 4 .
2 . Tìm các giá trị của x để các biểu thức sau nhận giá trị dương .
a. A = x² + 6 .
b. B = ( 5 - x ) . ( x + 8 ) .
c. C = ( x - 1 ) . ( x - 2 ) / x - 3 .
Tìm giá trị nhỏ nhất của biểu thức H = 2019 - |x - y|2018 - | 2x+1| - | 4x+2|
Tính giá trị lớn nhất; nhỏ nhất của các biểu thức sau:
a,B=\(1,5+\left|2-x\right|\) ; b,M=\(-5\left|1-4x\right|-1\) ; c,\(B=\left|x+\dfrac{1}{2}\right|+\left|x+\dfrac{1}{3}\right|+\left|x+\dfrac{1}{4}\right|\) ;
d,D=\(\left|x-1\right|+\left|x-4\right|\) ; e,B=\(\left|1993-x\right|+\left|1994-x\right|\) ; g,C=\(x^2+\left|y-2\right|-5\) ;
h,A=\(3,7-\left|4,3-x\right|\) ; i,B=\(-\left|3x+8,4\right|-14,2\) ; k,C=\(\left|4x-3\right|+\left|5y+7,5\right|+17,5\) ;
l,M=\(\left|x-2002\right|+\left|x-2001\right|\)
chohai số nguyên x,y thỏa mãn 5x^2+5y^2+8xy-2x+2y+2=0 .Tính giá trị của biểu thức M=(x+y)x^2015+(x-2)^2016+(y+1)^2017
Cho a,b,c là các số dương . Tìm giá trị nhỏ nhất của biểu thức
P = ( a + b + c ) ( \(\dfrac{1}{a}\)+ \(\dfrac{1}{b}\)+ \(\dfrac{1}{c}\))
Tính các giá trị biểu thức sau:
a) \(A=x^5-2018x^4+2018x^3-2018x^2+2018x-2019\) biết x=2017
b) \(B=2x^5+5y^3+4\) tại x,y thỏa mãn \(\left(x+1\right)^{20}+\left(y+2\right)^{30}=0\)
a) tìm giá trị nhỏ nhất của biểu thức C = / x- 2017 / + 2018 / / x - 2017 / +2019
b) chứng tỏ rằng S = 3/4 + 8/9 + 15 / 16 + ... + n2 - 1/ n2 không là số tự nhiên với mọi hình thức n ∈ N ; n > 2