x-4\(\sqrt{x}+7\)
=x-4\(\sqrt{x}+4+3\)
=\(\left(\sqrt{x}-2\right)^2+3\) lớn hơn hoặc bằng 3 vậy minA =3 dấu bằng xảy ra
<=> x=4
chỗ kia là
x+\(4\sqrt{x}\)+7
ở dưới là
x+ \(4\sqrt{x}\)+4+3 nhé
x-4\(\sqrt{x}+7\)
=x-4\(\sqrt{x}+4+3\)
=\(\left(\sqrt{x}-2\right)^2+3\) lớn hơn hoặc bằng 3 vậy minA =3 dấu bằng xảy ra
<=> x=4
chỗ kia là
x+\(4\sqrt{x}\)+7
ở dưới là
x+ \(4\sqrt{x}\)+4+3 nhé
Bài 1: Rút gọn biểu thức D = \(\sqrt{16x^4}-2x^2+1\)
Bài 2: Tìm giá trị lớn nhất – nhỏ nhất của biểu thức sau : “ Dùng điều kiện xác định”
e) E = \(\dfrac{2\sqrt{x}}{\sqrt{x}+3}\) ĐKXĐ: \(x\ge0\)
Bài 3: Tìm giá trị lớn nhất – nhỏ nhất của biểu thức sau : “ Dùng hằng đẳng thức ”
B = \(1-\sqrt{x^2-2x+2}\)
Bài 4: Cho P = \(\dfrac{4\sqrt{x}+10}{2\sqrt{x}-1}\left(x\ge0;x\ne\dfrac{1}{4}\right)\). Tính tổng các giá trị x nguyên để biểu thức P có giá trị nguyên
tìm giá trị nhỏ nhất của biểu thức: \(\dfrac{1}{\sqrt{x}-1}\)( x>0, x#1)
Cho hai biểu thức: P = (sqrt(x - 2))/(sqrt(x) - 3) và Q = √x 6√x + 3 √x-3 9-x √x+3 (với x>0; x#9) a) Tính giá trị của P khi x = 9 . b) Rút gọn Q. c) Tìm x để biểu thức A = P.Q đạt giá trị nhỏ nhất.
Tìm giá trị nhỏ nhất của biểu thức sau:
\(\dfrac{x+7}{\sqrt[]{x}+3}\)
Bài 5. Cho biểu thức: C = \(\dfrac{2\sqrt{x}-3}{\sqrt{x}-2}\) 𝑣ớ𝑖 𝑥 ≥ 0; 𝑥 ≠ 4. Tìm x nguyên để C đạt giá trị nguyên nhỏ nhất
Bài 6. Cho biểu thức: D = \(\dfrac{x-3}{\sqrt{x}+1}\) với 𝑥 ≥ 0; 𝑥 ≠ 1. Tìm x nguyên để D có giá trị là số nguyên
Tìm giá trị nhỏ nhất của biểu thức\(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
Cho biểu thức P = \(\dfrac{3\sqrt{x}}{\sqrt{x}+1}\). Tìm giá trị nguyên nhỏ nhất của x để \(2P>\sqrt{3P}\)
Cho các biểu thức \(A=\dfrac{1}{\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\); \(B=\dfrac{\sqrt{x}}{x+\sqrt{x}}\); \(P=\dfrac{A}{B}\); \(x>0\)
a) Rút gọn biểu thức P và tính giá trị của P khi x = 4.
b) Tìm các giá trị của x để \(A\le3B\)
c) So sánh B với 1
d) Tìm x thỏa mãn: \(P\sqrt{x}+\left(2\sqrt{5}-1\right)\sqrt{x}=3x-2\sqrt{x-4}+3\)
e) Tìm giá trị nhỏ nhất của P.
f) Tìm các giá trị nguyên của x để P nhận giá trị là số nguyên.
Bài 10. Cho biểu thức P = \(\dfrac{2\sqrt{x-3}}{\sqrt{x}+2}\) với 𝑥 ≥ 0; 𝑥 ≠ 4. Tìm các giá trị của x để P có giá trị nguyên.