\(\left(x+\dfrac{1}{3}\right)^2\ge0;\left|y+5\right|\ge0\\ \Rightarrow\left(x+\dfrac{1}{3}\right)^2+\left|y+5\right|\ge0\\ \Rightarrow\left(x+\dfrac{1}{3}\right)^2+\left|y+5\right|-\dfrac{2}{5}\ge-\dfrac{2}{5}\)
Dấu "=" xảy ra khi
\(\left\{{}\begin{matrix}\left(x+\dfrac{1}{3}\right)^2=0\\\left|y+5\right|=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{3}=0\\y+5=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{3}\\y=-5\end{matrix}\right.\)