(Trong đó a, b, c là độ dài 3 cạnh của 1 tam giác)
Đặt \(x=b+c-a\) , \(y=a+c-b\), \(z=a+b-c\) thì x , y , z > 0
Ta có : \(\left\{{}\begin{matrix}b+c-a=x\\a+c-b=y\\a+b-c=z\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\frac{z+y}{2}\\b=\frac{x+z}{2}\\c=\frac{x+y}{2}\end{matrix}\right.\)
Vậy \(P=\frac{2y+2z}{x}+\frac{9z+9x}{2y}+\frac{8x+8y}{z}\)
\(=\left(\frac{2y}{x}+\frac{9x}{2y}\right)+\left(\frac{2z}{x}+\frac{8x}{z}\right)+\left(\frac{9z}{2y}+\frac{8y}{z}\right)\ge2\sqrt{9}+2\sqrt{16}+2\sqrt{36}=26\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}\frac{2y}{x}=\frac{9x}{2y}\\\frac{2z}{x}=\frac{8x}{z}\\\frac{9z}{2y}=\frac{8y}{z}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4y^2=9x^2\\2z^2=8x^2\\9z^2=8y^2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\frac{z}{2}\\y=\frac{3}{2}x\\z=\frac{4}{3}y\end{matrix}\right.\)
Vậy giá trị nhỏ nhất của biểu thức P là 26 khi và chỉ khi \(\left\{{}\begin{matrix}x=\frac{z}{2}\\y=\frac{3}{2}x\\z=\frac{4}{3}y\end{matrix}\right.\)
Chúc bạn học tốt !!