Cho a, b là số thực dương thỏa mãn a + b \(\ge1\)
Tìm GTNN: A = \(\dfrac{8a^2+b}{4a}+b^2\)
Cho a,b là 2 số thay đổi thỏa mãn điều kiện a>0 và \(a+b\ge1\).Tìm giá trị nhỏ nhất của biểu thức A=\(\frac{8a^2+b}{4a}+b^2\)
Cho a,b,c là các số thực dương thỏa mãn a+b+c=3. Tìm giá trị nhỏ nhất của biểu thức:
\(P=\dfrac{1}{a\left(b^2+bc+c^2\right)}+\dfrac{1}{b\left(c^2+ca+a^2\right)}+\dfrac{1}{c\left(a^2+ab+b^2\right)}+\dfrac{abc}{ab+bc+ca}\)
Với các số thực không âm a,b,c thỏa mãn \(a^2+b^2+c^2=1\), tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức: \(Q=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)
Cho a,b>0 thỏa mãn \(a+b\ge1\)
Tìm GTNN của \(Q=\dfrac{8a^2+b}{4a}+b^2\)
Bài 1 :Cho 2 số dương x,y thỏa mãn điều kiện \(x+y\le1\). Chứng minh\(x^2-\frac{3}{4x}-\frac{x}{y}\le\frac{-9}{4}\)
Bài 2 : Cho 2 số thực x,y thay đổi thỏa mãn điều kiện x+y\(\ge1\)và x>0
Tìm giá trị nhỏ nhất của biểu thức \(M=y^2+\frac{8x^2+y}{4x}\)
bài 3: cho 3 số dương x,y,z thay đổi luôn thỏa mãn điều kiện x+y+z=1. Tìm giá trị lớn nhất của biểu thức:\(P=\dfrac{x}{x+1}+\dfrac{y}{y+1}+\dfrac{z}{z+1}\)
cho ba số thực không âm a,b,c thỏa mãn ab+ac+bc=1 .Tìm giá trị nhỏ nhất của biểu thức P=\(\dfrac{a^2+b^2+c^2+3}{a+b+c-abc}\)
Cho 3 số dương a, b, c thay đổi thỏa mãn: \(a^2+b^2+c^2=3\). Tìm giá trị nhỏ nhất của biểu thức: \(P=2.\left(a+b+c\right)+\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
Cho 3 số dương a, b, c thay đổi thỏa mãn: \(a^2+b^2+c^2=3\). Tìm giá trị nhỏ nhất của biểu thức: \(P=2.\left(a+b+c\right)+\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)