\(P=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{a^2+b^2+c^2}\)
\(P=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{9-2\left(ab+bc+ca\right)}\)
\(P=\frac{1}{3ab}+\frac{1}{3bc}+\frac{1}{3ca}+\frac{1}{9-2\left(ab+bc+ca\right)}+\frac{2}{3}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)
\(P\ge\frac{16}{3ab+3bc+3ca+9-2\left(ab+bc+ca\right)}+\frac{2}{3}\left(\frac{9}{ab+bc+ca}\right)\)
\(P\ge\frac{16}{9+ab+bc+ca}+\frac{6}{ab+bc+ca}\)
Sử dụng đánh giá quen thuộc:\(3\left(ab+bc+ca\right)\le\left(a+b+c\right)^2\)
\(\Rightarrow ab+bc+ca\le3\)
\(\Rightarrow P\ge\frac{16}{9+3}+\frac{6}{3}=2+\frac{4}{3}=\frac{10}{3}\)
"="<=>a=b=c=1