Cho x,y,z là các số thực dương thỏa mãn đẳng thức xy+yz+zx=5. Tìm giá trị nhỏ nhất của biểu thức
\(P=\frac{3x+3y+3z}{\sqrt{6\left(x^2+5\right)}+\sqrt{6\left(y^2+5\right)}+\sqrt{6\left(z^2+5\right)}}\)
Cho x,y,z là các số thực dương thỏa mãn x+y+z=\(\sqrt{2}\).Tìm GTNN của biểu thức \(T=\sqrt{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\left(\frac{\sqrt{y+z}}{x}+\frac{\sqrt{z+x}}{y}+\frac{\sqrt{x+y}}{z}\right)\)
Cho \(A=\sqrt{\left(x+y\right)\left(y+z\right)\left(x+z\right)}.\left(\dfrac{\sqrt{y+z}}{x}+\dfrac{\sqrt{z+x}}{y}+\dfrac{\sqrt{x+y}}{z}\right)\)
Tìm Min A biết x,y,z là 3 số thực dương thay đổi có tổng bằng \(\sqrt{2}\)
Cho x, y, z là các số thực dương thỏa mãn: \(x+y+z+\sqrt{xyz}=4\). Rút gọn biểu thức: \(A=\sqrt{x.\left(4-y\right).\left(4-z\right)}+\sqrt{y.\left(4-z\right).\left(4-x\right)}+\sqrt{z.\left(4-x\right).\left(4-y\right)}-\sqrt{xyz}\)
Cho x,y,z > 0 và xy + yz + zx = 1
Tính giá trị biểu thức: \(P=x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\frac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}+z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}\)
Cho 3 số dương x, y, z thỏa mãn điều kiện xy + yz + zx = 1. Tính tổng:
\(S=\sqrt[x]{\frac{\left(1+y^2\right)\left(1+z^2\right)}{\left(1+x^2\right)}}+\sqrt[y]{\frac{\left(1+x^2\right)\left(1+z^2\right)}{\left(1+y^2\right)}}+\sqrt[z]{\frac{\left(1+x^2\right)\left(1+y^2\right)}{\left(1+z^2\right)}}\)
Cho x,y,z là 3 số không âm thoả mãn x+y+z=1010.Tìm giá trị lớn nhất của biểu thức:
\(P=\sqrt{2020x+\frac{\left(y-z\right)^2}{2}}+\sqrt{2020y+\frac{\left(z-x\right)^2}{2}}+\sqrt{2020z+\frac{\left(x-y\right)^2}{2}}\)
cho x,y,z > 0 , xyz = 1. Tìm GTNN của: \(A=\frac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}+\frac{y^2\left(z+x\right)}{z\sqrt{z}+2x\sqrt{x}}+\frac{z^2\left(x+y\right)}{x\sqrt{x}+2y\sqrt{y}}\)
Cho x,y,z > 0. Chứng minh : \(\frac{\sqrt{y+z}}{x}+\frac{\sqrt{x+z}}{y}+\frac{\sqrt{x+y}}{z}\)≥\(\frac{4\left(x+y+z\right)}{\sqrt{\left(x+y\right)\left(y+z\right)\left(z+x\right)}}\)