Ta có :
\(B=\left|x+3\right|+\left|x-2\right|+\left|x-5\right|=\left|x+3\right|+\left|x-2\right|+\left|5-x\right|\)
Vì \(\left\{{}\begin{matrix}\left|x+3\right|\ge x+3\\\left|x-2\right|\ge0\\\left|x-5\right|\ge5-x\end{matrix}\right.\)
\(\Rightarrow\left|x+3\right|+\left|x-2\right|+\left|x-5\right|\ge\left(x+3\right)+0+\left(5-x\right)\)
\(\Rightarrow\left|x+3\right|+\left|x-2\right|+\left|x-5\right|\ge8\)
Vậy dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x+3\ge0\\x-2=0\\5-x\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge-3\\x=2\\5\ge x\end{matrix}\right.\) \(\Rightarrow x=2\)
Khi x = 2 thì Biểu thức B có giá trị nhỏ nhất là :
\(B=\left|x+3\right|+\left|x-2\right|+\left|x-5\right|\)
\(B=\left|2+3\right|+\left|2-2\right|+\left|2-5\right|=8\)
Giải:
Có:
\(B=\left|x+3\right|+\left|x-2\right|+\left|x-5\right|\)
Vì:
\(\left|x+3\right|\ge0\); \(\left|x-2\right|\ge x-2\) và \(\left|x-5\right|=\left|5-x\right|\ge5-x\)
\(\Leftrightarrow B\ge0+x-2+5-x\)
\(\Leftrightarrow B\ge\left(0-2+5\right)+\left(x-x\right)\)
\(\Leftrightarrow B\ge3\)
\(\Rightarrow Min_B=3\)
Vậy giá trị nhỏ nhất của biểu thức\(B=\left|x+3\right|+\left|x-2\right|+\left|x-5\right|\) là 3.
Chúc bạn học tốt!