Tính giá trị biểu thức:
A=1-2+22-23+24-25+...+22008
B:\(\left(1+\dfrac{8}{10}\right)\cdot\left(1+\dfrac{8}{22}\right)\cdot\left(1+\dfrac{8}{36}\right)\cdot...\cdot\left(1+\dfrac{8}{8532}\right)\)
Chứng minh rằng :
a)\(\dfrac{1}{x}\)-\(\dfrac{1}{x+a}=\dfrac{a}{x\left(x+a\right)}\)
b)\(\dfrac{1}{x\left(x+1\right)}-\dfrac{1}{\left(x+1\right)\left(x+2\right)}=\dfrac{2}{x\left(x+1\right)\left(x+2\right)}\)
c)\(\dfrac{1}{x\left(x+1\right)\left(x+2\right)}-\dfrac{1}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}=\dfrac{3}{x\left(x+1\right)\left(x+2\right)\left(x+3\right)}\)
1)tìm x\(\in\)Q biết:
a)\(\left(5\cdot x+1\right)^2=\dfrac{36}{49}\)
2)tìm x,y biết:
a)\(x^2+\left(y-\dfrac{1}{10}\right)^4=0\)
b)\(\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{40}\le0\)
Tìm giá trị nhỏ nhất cảu biểu thức:
A=\(\dfrac{\left|x\right|+1945}{1946}\)
B=\(\dfrac{-1}{\left|x+1\right|}\)
1. a) \(|\left(x-\dfrac{1}{2}\right)\left|2x-\dfrac{3}{4}\right||=2x-\dfrac{3}{4}\)
b) \(|\left|x-\dfrac{1}{2}\right|\left|2x-\dfrac{3}{4}\right||=2x-\dfrac{3}{4}\)
2. Cho x + y = 3. Tìm gtnn của biểu thức:
\(\left|x+1\right|+\left|y-2\right|\)
Giúp mình vs m.n ơi
Tìm x , y biết
a) 3x+2\(⋮\) 2x-1
b) x2-2x+3\(⋮\)x-1
c) \(|2x-3|+\left(y-1\right)^{2^{ }}+\left(27-1\right)^2\le0\)
Tính giá trị của các biểu thức
A =5a3b4 với a=-1;b=1
B=9a5b2với a=1;b=-1
C= ax+bx+ay+by với \(\left\{{}\begin{matrix}a+b=-2\\x+y=17\end{matrix}\right.\)
Tìm Max ; Min
A=\(|x-3|+1\)
B=\(3-|x+1|\)
C=\(\left(x-1\right)^2+\left|2y+2\right|.3\)
Tính giá trị biểu thức :
\(\dfrac{1}{2}-\left(\dfrac{1}{3}+\dfrac{2}{3}\right)+\left(\dfrac{1}{4}+\dfrac{2}{4}+\dfrac{3}{4}\right)-\left(\dfrac{1}{5}+\dfrac{2}{5}+\dfrac{3}{5}+\dfrac{4}{5}\right)+\left(\dfrac{1}{6}+\dfrac{2}{6}+\dfrac{3}{6}+\dfrac{4}{6}+\dfrac{5}{6}\right)-\left(\dfrac{1}{7}+\dfrac{2}{7}+\dfrac{3}{7}+\dfrac{4}{7}+\dfrac{5}{7}+\dfrac{6}{7}\right)+...+\left(100+...+\dfrac{99}{100}\right)\)
Bài 1: Phá dấu ngoặc rồi tính:
a)\(\left(a+b+c\right)-\left(a-b+c\right)\)
b)\(\left(4.x+5.y\right)-\left(5.x-4.y-1\right)\)
Bài 2: Chứng minh bất đẳng thức:
a)\(\left(a+b+c+d\right)-\left(a-b-c+d\right)+1=a-\left(a-2b-2c-d\right)+\left(d+1\right)\)
b)\(\left(4x-3y+2\right)-\left(3x-4y+2\right)=\left(2x+2y\right)-\left(x+y\right)\)
1: rút gọn rồi tính
\(\left(-\dfrac{72}{40}-\dfrac{144}{60}-2\dfrac{1}{3}\right)\) : \(\left(\dfrac{45}{100}-\dfrac{25}{60}+-\dfrac{75}{25}\right)\)
2: tìm x: \(3\cdot\left(4-x\right)+\left(x+2\right)\cdot\left(1+2x\right)=7\cdot\left(1+x\right)-2x\cdot\left(2-x\right)\)
3: tìm x: \(\dfrac{2\cdot\left(1+x\right)}{3}-\dfrac{5\cdot\left(2-x\right)}{6}=1\dfrac{1}{3}-\dfrac{3\cdot\left(2x+3\right)}{4}-1\dfrac{1}{2}\cdot\left(x+1\right)\)
4: cho a= \(3+3^{2^3}+3^3+3^4+...+3^{360}\)