Ta có: 2x2 + x + 1
= \(2\left(x^2+\dfrac{x}{2}+\dfrac{1}{2}\right)\)
= \(2\left(x^2+2.x.\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{7}{16}\right)\)
= \(2\left(x+\dfrac{1}{4}\right)^2+\dfrac{7}{8}\)
Vì \(2\left(x+\dfrac{1}{4}\right)^2\ge0,\forall x\) nên \(2\left(x+\dfrac{1}{4}\right)^2+\dfrac{7}{8}\ge\dfrac{7}{8},\forall x\)
Do đó: Min của 2x2 + x + 1 là \(\dfrac{7}{8}\) \(\Leftrightarrow x+\dfrac{1}{4}=0\) \(\Leftrightarrow x=-\dfrac{1}{4}\)