Tìm giá trị lớn nhất và giá trị nhỏ nhất của mỗi hàm số sau:
a) \(f\left(x\right)=x^3-\dfrac{3}{2}x^2\) trên đoạn [-1; 2];
b) \(f\left(x\right)=x^4-2x^3+x^2+1\) trên đoạn [-1; 1];
c) \(f\left(x\right)=e^x\left(x^2-5x+7\right)\) trên đoạn [0; 3];
d) \(f\left(x\right)=\cos2x+2x+1\) trên đoạn \(\left[\dfrac{-\pi}{2};\pi\right]\).
a) Ta có: \(f'\left( x \right) = 3{x^2} - 3x\).
Nhận xét \(f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 1\end{array} \right.\).
Ta có \(f\left( { - 1} \right) = - \frac{5}{2};f\left( 0 \right) = 0;f\left( 1 \right) = - \frac{1}{2};f\left( 2 \right) = 2\)
Vậy hàm số \(f\left( x \right) = {x^3} - \frac{3}{2}{x^2}\) có giá trị nhỏ nhất bằng \(\frac{{ - 5}}{2}\) khi \(x = - 1\) và có giá trị lớn nhất bằng \(2\) khi \(x = 2\) .
b) Ta có: \(f'\left( x \right) = 4{x^3} - 6{x^2} + 2x\).
Nhận xét \(f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 1\\x = \frac{1}{2}\end{array} \right.\).
Ta có \(f\left( { - 1} \right) = 5;f\left( 0 \right) = 1;f\left( {\frac{1}{2}} \right) = \frac{{17}}{{16}};f\left( 1 \right) = 1\)
Vậy hàm số \(f\left( x \right) = {x^4} - 2{x^3} + {x^2} + 1\) có giá trị nhỏ nhất bằng \(1\) khi \(\left[ \begin{array}{l}x = 1\\x = 0\end{array} \right.\) và có giá trị lớn nhất bằng \(5\) khi \(x = - 1\) .
c) Ta có: \(f'\left( x \right) = {e^x}\left( {{x^2} - 3x + 2} \right)\).
Nhận xét \(f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 2\\x = 1\end{array} \right.\).
Ta có \(f\left( 2 \right) = {e^2};f\left( 0 \right) = 7;f\left( 3 \right) = {e^3};f\left( 1 \right) = 3e\)
Vậy hàm số \(f\left( x \right) = {e^x}\left( {{x^2} - 5x + 7} \right)\) có giá trị nhỏ nhất bằng \(7\) khi \(x = 0\) và có giá trị lớn nhất bằng \({e^3}\) khi \(x = 3\).
d) Ta có: \(f'\left( x \right) = - 2\sin 2x + 2\).
Nhận xét \(f'\left( x \right) = 0 \Leftrightarrow x = \frac{\pi }{4}\).
Ta có \(f\left( { - \frac{\pi }{2}} \right) = - \pi ;f\left( {\frac{\pi }{4}} \right) = 1 + \frac{\pi }{2};f\left( \pi \right) = 2 + 2\pi \)
Vậy hàm số \(f\left( x \right) = \cos 2x + 2x + 1\) có giá trị nhỏ nhất bằng \( - \pi \) khi \(x = - \frac{\pi }{2}\) và có giá trị lớn nhất bằng \(2 + 2\pi \) khi \(x = \pi \)