\(\Rightarrow4Px^2-8x+P-3=0\)
\(\Delta\ge0\Rightarrow64-16P\left(P-3\right)\ge0\)
\(\Leftrightarrow-16P^2+48P+64\ge0\)
\(\Leftrightarrow-1\le P\le4\)
Vậy Pmin=-1\(\Leftrightarrow\dfrac{8x+3}{4x^2+1}=-1\)\(\Rightarrow4x^2-1-8x-3=0\)\(\Leftrightarrow x^2-2x-1=0\)\(\Leftrightarrow x=1\pm\sqrt{2}\)
Vậy Pmax=4\(\Leftrightarrow\dfrac{8x+3}{4x^2+1}=4\)\(\Rightarrow16x^2+4-8x-3=0\)\(\Leftrightarrow16x^2-8x+1=0\)\(\Leftrightarrow x=\dfrac{1}{4}\)