a) \(A=\dfrac{4x+3}{x^2+1}\)
\(\Leftrightarrow A=\dfrac{x^2+4x+4-x^2-1}{x^2+1}\)
\(\Leftrightarrow A=\dfrac{\left(x^2+4x+4\right)-\left(x^2+1\right)}{x^2+1}\)
\(\Leftrightarrow A=\dfrac{x^2+4x+4}{x^2+1}-\dfrac{x^2+1}{x^2+1}\)
\(\Leftrightarrow A=\dfrac{\left(x+2\right)^2}{x^2+1}-1\ge0-1=-1\)
\(\Rightarrow A_{min}=1\) khi \(x=-2\)
\(A=\dfrac{4x+3}{x^2+1}\)
\(\Leftrightarrow A=\dfrac{4\left(x^2+1\right)-4x^2-4x-1}{x^2+1}\)
\(\Leftrightarrow A=4-\dfrac{\left(2x+1\right)^2}{x^2+1}\le4\)
Vậy GTLN của A là 4
Dấu ''='' xảy ra khi x=\(\dfrac{-1}{2}\)