Bài 1 : cho biểu thức
\(p=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-1\right)\) với x lớn hơn hoặc bằng 0 ; x # 1
1) rút gọ P
2 tìm x để P = \(\dfrac{7}{4}\)
tìm giá trị nhỏ nhất của p
Cho biểu thức: \(A=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}\right):\left(\dfrac{2\sqrt{x}-4}{\sqrt{x}-3}-1\right)\)
a/ Tìm điều kiện xác định của biểu thức A
b/ Rút gọn A
c/ Tìm các giá trị nguyên của x để giá trị A là một số nguyên.
cho B=\(\left(\dfrac{2\sqrt{x}+x}{x\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}\right)\div\left(1-\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}\right)\)
a. rút gọn B
b. tính \(\sqrt{B}\) khi \(x=5+2\sqrt{3}\)
c. tìm x để B= \(\dfrac{1}{2x^3-x-1}\)
d. tìm giá trị của x để giá trị của B không lớn hơn giá trị biểu thức \(\dfrac{1}{x+2}\)
Lm nhanh giúp mk nhé mk đang cần gấp
cho p=\(\left(\dfrac{\sqrt{x}-1}{3\sqrt{x}-1}-\dfrac{1}{3\sqrt{x}+1}+\dfrac{5\sqrt{x}}{9x-1}\right)\div\left(1-\dfrac{3\sqrt{x}-2}{3\sqrt{x}+1}\right)\)
a)rút gọn p
b)tính giá trị của p khi\(9x^2-10x+1=0\)
c)tính giá trị của p khi \(x=8-2\sqrt{7}\)
d)tìm các giá trị của x dể p=\(\dfrac{6}{5}\)
e)tìm x sao cho p=\(\dfrac{x}{5\sqrt{x}-3}\)
lm nhanh giúp mk nhé
Bài 1 : Cho biểu thức : P= \(\left(\frac{1}{\sqrt{x-1}}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)
a) Rút gọn P ( với x>0 ,x ≠ 1 ,x ≠ 4)
b) Tính giá trị của P tại \(x=4+2\sqrt{3}\)
Bài 2 : Tìm giá trị lớn nhất và giá trị nhỏ nhất của \(A=\frac{3-4x}{x^2+1}\)
1, P = \(\left(3+\frac{3}{\sqrt{x}-1}\right):\left(\frac{x+2}{x+\sqrt{x}-2}-\frac{\sqrt{x}}{\sqrt{x}+2}\right)\)
với x > 0; x\(\ne\)1
Xin cảm ơn ạ!
`Cho biểu thức P=\(\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right)\div\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
a)Rút gọn P
b)Tìm giá trị nhỏ nhất
Lm nhanh giúp mk nhé!
ChoP=\(\left(\dfrac{3}{\sqrt{x}+1}-\dfrac{1}{x-1}\right):\dfrac{1}{\sqrt{x}+1}\)
a,Tìm tập xác định và rút gọn biểu thức P
b,Tìm để P=\(\dfrac{5}{4}\)
c,Tìm giá trị nhỏ nhất của M = \(\dfrac{x+12}{\sqrt{x}-1}\cdot\dfrac{1}{P}\)
Cho P=\(\left(\dfrac{\sqrt{x}-1}{3\sqrt{x}-1}-\dfrac{1}{3\sqrt{x}+1}+\dfrac{5\sqrt{x}}{9x-1}\right)\div\left(1-\dfrac{3\sqrt{x}-2}{3\sqrt{x}+1}\right)\)
a)Rút gọn P
b)Tính giá trị của P khi \(9x^2-10x+1=0\)
c)Tính giá trị của P khi \(x=8-2\sqrt{7}\)
d)Tìm các giá trị của x để P=\(\dfrac{6}{5}\)
e)Tìm x sao cho P=\(\dfrac{x}{5\sqrt{x}-3}\)
f)Tính giá trị của P khi \(x=a^{12}+a^2b^2+b^{12}\) với a, b là các số thực thỏa mãn đồng thời \(a^2+a^2b^2=4\), \(a^2+a^2b^2+b^2=8\)