\(B=6x-x^2-5\)
\(=>-B=x^2-6x+5\)
\(=\left(x^2-6x+9\right)-4=\left(x-3\right)^2-4\)
Mà \(\left(x-3\right)^2\ge0=>\left(x-3\right)^2-4\ge-4\)
Vậy \(MAX_{-B}=-4=>MIN_B=4\Leftrightarrow x=3\)
Vậy ....
\(B=6x-x^2-5=-\left(x^2-6x+9\right)+4=-\left(x-3\right)^2+4\le4\)Vậy \(Max_B=4\) khi \(x-3=0\Rightarrow x=3\)