Ôn tập: Bất phương trình bậc nhất một ẩn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quách Trần Gia Lạc

Tìm giá trị lớn nhất của biểu thức sau: \(A=-x^2-3y^2-2xy+10x+14y-18\). Lúc đó, giá trị của x, y là bao nhiêu?

Trần Quốc Lộc
14 tháng 4 2018 lúc 10:52

\(A=-x^2-3y^2-2xy+10x+14y-18\\ =-x^2-y^2-2y^2-2xy+10x+10y+4y-25-2+9\\ =-\left(x^2+y^2+25+2xy-10x-10y\right)-\left(2y^2-4y+2\right)+9\\ \\ =-\left(x+y-5\right)^2-2\left(y^2-2y+1\right)+9\\ =-\left(x+y-5\right)^2-2\left(y-1\right)^2+9\)Do \(-\left(x+y-5\right)^2\le0\forall x;y\)

\(-2\left(y-1\right)^2\le0\forall y\)

\(\Rightarrow-\left(x+y-5\right)^2-2\left(y-1\right)^2\le0\forall x;y\)

\(\Rightarrow A=-\left(x+y-5\right)^2-2\left(y-1\right)^2+9\le9\forall x\)

Dấu "='' xảy ra khi: \(\left\{{}\begin{matrix}-\left(x+y-5\right)^2=0\\-2\left(y-1\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y-5=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5-y\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=1\end{matrix}\right.\)

Vậy \(A_{\left(Max\right)}=9\) khi \(\left\{{}\begin{matrix}x=4\\y=1\end{matrix}\right.\)


Các câu hỏi tương tự
Tùng
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Thư Hoài Ngô
Xem chi tiết
Tạ Uyên
Xem chi tiết
Alice dono
Xem chi tiết
việt anh
Xem chi tiết
Phạm Thị Thắm Phạm
Xem chi tiết
Alice dono
Xem chi tiết
leduythai
Xem chi tiết