\(E=-\left(x+1\right)^2-\left|2y-4\right|\)
Ta có: \(\left\{{}\begin{matrix}-\left(x+1\right)^2\le0\\-\left|2y-4\right|\le0\end{matrix}\right.\Rightarrow E\le0\)
Dấu " = " khi \(\left\{{}\begin{matrix}-\left(x+1\right)^2=0\\-\left|2y-4\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)
Vậy \(MAX_E=0\) khi x = -1 và y = 2
\(E=-\left(x+1\right)^2-\left|2y-4\right|\\ =-\left[\left(x+1\right)^2+\left|2y-4\right|\right]\\ \left(x+1\right)^2\ge0\forall x\\ \left|2y-4\right|\ge0\forall y\\ \Rightarrow\left(x+1\right)^2+\left|2y-4\right|\ge0\forall x,y\\ \Rightarrow-\left[\left(x+1\right)^2+\left|2y-4\right|\right]\le0\forall x,y\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\left(x+1\right)^2=0\\\left|2y-4\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x+1=0\\2y-4=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)
Vậy \(Max_E=0\) khi \(x=-1;y=2\)