Cho phương trình ẩn x: x2 – x + 1 + m = 0 (1)
a) Giải phương trình đã cho với m = 0.
b) Tìm các giá trị của m để phương trình (1) có hai nghiệm x1, x2 thỏa mãn: x1x2.( x1x2 – 2 ) = 3( x1 + x2 ).
Cho pt : x^-6x+m-3=0. Tìm m để pt có 2 nghiệm phân biệt thoả mãn: (x1-1)*(x2^-5x2+m-4)=0
tìm các giá trị của tham số m để phương trình x2-2(m-1)x+m2=0 có hai nghiệm phân biệt x1,x2 thỏa mãn hệ thức (x1-x2)2+6m = x1-2x2
Cho phương trình ẩn x: x2 – 2mx + 4 = 0 (1)
a) Giải phương trình đã cho khi m = 3.
b) Tìm giá trị của m để phương trình (1) có hai nghiệm x1, x2 thỏa mãn: ( x1 + 1 )2 + ( x2 + 1 )2 = 2.
Cho phương trình ẩn x: x2 – 2mx - 1 = 0 (1)
a) Chứng minh rằng phương trình đã cho luôn có hai nghiệm phân biệt x1 và x2.
b) Tìm các giá trị của m để: x12 + x22 – x1x2 = 7
cho pt \(x^2-4nx+12n-9=0\)
tìm giá trị của n để pt trên có 2 nghiệm x1; x2 thỏa mãn đẳng thức
\(x_1\left(x_2+3\right)+x_2\left(x_1+3\right)-54=0\)
Cho phương trình x2 - 6x + m = 0.
1) Với giá trị nào của m thì phương trình có 2 nghiệm trái dấu.
2) Tìm m để phương trình có 2 nghiệm x1, x2 thoả mãn điều kiện x1 - x2 = 4
cho phương trình ẩn x: x^2 -2x -m+2=0(m là tham số)
a Tìm m để phương trình đã cho có 2 nghiệm phân biệt.
b.Tìm m để 2 nghiệm x1, x2 thoả mãn : x1^2 -x2^2= 8
Cho phương trình (1)
x² - 2mx + 3m - 4=0 (x là ẩn)
Tìm giá trị của m để pt (1)
có hai nghiệm x1 x2 thoả mãn: x1<2<x2