Ôn tập chương 1: Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
ChloeVera

Tìm điều kiện xác định và rút gọn

\(P=\left(\dfrac{\sqrt{x}}{\sqrt{x-1}}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{1+\sqrt{x}}+\dfrac{2}{x-1}\right)\)

Nguyễn Lê Phước Thịnh
10 tháng 12 2020 lúc 21:55

ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\notin\left\{1;0\right\}\end{matrix}\right.\)

Sửa đề: \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{1+\sqrt{x}}+\dfrac{2}{x-1}\right)\)

Ta có: \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{1+\sqrt{x}}+\dfrac{2}{x-1}\right)\)

\(=\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\dfrac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)

\(=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}-1}{1}\)

\(=\dfrac{x-1}{\sqrt{x}}\)


Các câu hỏi tương tự
Nguyên Thảo Lương
Xem chi tiết
anh phuong
Xem chi tiết
Momozono Hisaki
Xem chi tiết
:vvv
Xem chi tiết
vũ thị lan
Xem chi tiết
Trần Thị Thùy Dương
Xem chi tiết
Nguyên Thảo Lương
Xem chi tiết
 Huyền Trang
Xem chi tiết
Aocuoi Huongngoc Lan
Xem chi tiết