ĐKXĐ:x2+1≥0
Vì x2 luôn luôn ≥0 với mọi x
⇒Để căn thức trên xác định thì x∈R
ĐKXĐ:x2+1≥0
Vì x2 luôn luôn ≥0 với mọi x
⇒Để căn thức trên xác định thì x∈R
Tìm điều của x để căn thức sau có nghĩa
\(\sqrt{x^2-9}\)
\(\sqrt{x^2+9}\)
\(\sqrt[3]{3x+9}\)
a.tìm điều kiện để căn thức bậc hai có nghĩa \(\dfrac{1}{\sqrt{2-x}}\)
b.tính: \(\sqrt[3]{125}.\sqrt[3]{-216}-\sqrt[3]{512}.\sqrt[3]{\dfrac{1}{8}}\)
1.
a. Tìm điều kiện để căn thức bậc hai có nghĩa \(\sqrt{\dfrac{x^2}{2x-1}}\)
b. \(\dfrac{\sqrt[3]{625}}{\sqrt[3]{5}}-\sqrt[3]{-216}.\sqrt[3]{\dfrac{1}{27}}\)
* Giải phương trình
a. \(\sqrt{\left(x+1\right)^2}=3\)
b. \(3\sqrt{4x+4}-\sqrt{9x+9}-8\sqrt{\dfrac{x+1}{16}}=5\)
Bài 1
a. Tìm điều kiện để căn thức bậc hai có nghĩa \(\sqrt{\dfrac{1}{2-x}}\)
b. \(\sqrt[3]{125}.\sqrt[3]{-216}-\sqrt[3]{512}.\sqrt[3]{\dfrac{1}{8}}\)
* Chứng minh
\(\dfrac{\sqrt{ab}-b}{b}-\sqrt{\dfrac{a}{b}}\) < 0 với a ≥ 0, b≥0
Bài 1
a. Tìm điều kiện để căn thức bậc hai có nghĩa \(\sqrt{\dfrac{2x+1}{x^2+1}}\)
b. \(\sqrt[3]{-27}+\sqrt[3]{64}-\dfrac{\sqrt[3]{-128}}{\sqrt[3]{2}}\)
* Rút gọn biểu thức
a. \(\sqrt{20}+2\sqrt{45}+\sqrt{125}-3\sqrt{80}\)
b. \(5\sqrt{\dfrac{1}{5}}+\dfrac{1}{3}\sqrt{45}+\sqrt{\left(2-\sqrt{5}\right)^2}\)
c. \(\dfrac{5+\sqrt{5}}{5-\sqrt{5}}+\dfrac{5-\sqrt{5}}{5+\sqrt{5}}\)
Bài 1:
a.Tìm điều kiện để căn thức bậc 2 có nghĩa \(\sqrt{\dfrac{-5}{2x+1}}\)
b. \(\sqrt[3]{64}+\sqrt[3]{-27}-\sqrt[3]{-4}.\sqrt[3]{2}\)
Tìm điều kiện của x để căn thức sau có nghĩa:
a)\(\sqrt{\dfrac{8x}{x^2+1}}\)
b)\(\sqrt{\dfrac{x^2-1}{x^2}}\)
1.
a. Tìm điều kiện đẻ căn thức bậc hai coa nghĩa
\(\sqrt{\dfrac{x^2}{2x-1}}\)
b. \(\dfrac{\sqrt[3]{625}}{\sqrt[3]{5}}-\sqrt[3]{-216}.\sqrt[3]{\dfrac{1}{27}}\)
Tìm điều kiện để căn thức sau có nghĩa;
\(\sqrt{4x^2+3}\)