Để (P) nằm hoàn toàn trên trục hoành thì
\(\left\{{}\begin{matrix}1>0\\\left(-2m\right)^2-4\left(m^2+3m-6\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow4m^2-4m^2-12m+24< 0\)
=>-12m<-24
hay m>2
Để (P) nằm hoàn toàn trên trục hoành thì
\(\left\{{}\begin{matrix}1>0\\\left(-2m\right)^2-4\left(m^2+3m-6\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow4m^2-4m^2-12m+24< 0\)
=>-12m<-24
hay m>2
Biết parabol (P) y = ax2 + bx + c có đỉnh nằm trên trục hoành và đi qua 2 điểm A(0;1) , B(2;1).
Tổng a + b + c là:
Bài 1: Cho y=x2-4x (P)
a,Khảo sát sự biến thiên và vẽ đồ thị hàm số (P)
b,Tìm GTLN,GTNN của hàm số trên [0;4]
c,Tìm m để phương trình:x2-4x+2m=0 có 2 nghiệm phân biệt
Bài 2:Tìm m để GTNN của y=-x2+4x+m2-2m trên [-1;3] bằng 1
câu 19: Tìm giá trị thực của tham số m khác 0 để hàm số y= mx^2-2mx-3m-2 có giá trị nhỏ nhất bằng -10 trên R
câu 20: Gọi S là tập hợp tất cả giá trị thực của tham số m để giá trị nhỏ nhất của hàm số y=f(x)=4x^2-4mx+m^2-2m trên đoạn [-2;0] bằng 3 . Tính tổng T các phần tử của S
tìm tất cả các giá trị của m sao cho hai parabol y=x^2+mx+(m+1)^2 và y=-x^2-(m+2)x-2(m+1) cắt nhau tại 2 điểm có hoành độ lần lượt là x1,x2 thỏa mãn P=|x1x2-3(x1+x2)| đạt GTLN
Tập hợp đỉnh y của parabol y=x^2-2mx+2m^2-4m+3 là parabol (Q). Parabol (Q) có thể cắt trục hoành tại điểm nào sau đây?
cho parabol \(x^2-1\) có đồ thị (P). Tìm tọa độ giao điểm P với trục hoành
Xác định tọa độ của đỉnh và các giao điểm với trục tung, trục hoành (nếu có) của một parabol
Vẽ hình parabol
a) y=x2−3x+2
b) y=−2x2+4x−3
c) y=x2−2x
d) y=−x2+4
Mọi người giải giúp em với ạ! Em xin cảm ơn!
Cho đường thẳng d: y=x+m và hàm số y=x^2 - 3x + 2m + 1 có đồ thị (Pm). Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để (Pm) cắt trục hoành tại hai điểm phân biệt A,B có nằm về hai phái của trục hoành. Tính số phần tử S
Xác định trục đối xứng, tọa độ đỉnh, các giao điểm với trục tung và trục hoành của parabol ?
a) \(y=2x^2-x-2\)
b) \(y=-2x^2-x+2\)
c) \(y=-\dfrac{1}{2}x^2+2x-1\)
d) \(y=\dfrac{1}{5}x^2-2x+6\)