Chương 5: ĐẠO HÀM

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quỳnh Thanh

Tìm điểm A trên đường thẳng x=5 sao cho từ A ta có thể vẽ đến ( C ): y=\(\frac{x+3}{x-1}\)hai tiếp tuyến mà hai tiếp điểm cùng với điểm B(1;3) thẳng hàng.

Akai Haruma
16 tháng 7 2020 lúc 23:17

Lời giải:

Gọi tọa độ điểm $A$ là $(5,a)$

PTTT tại tiếp điểm $(x_0,y_0)$ là:

(d): $y=y'(x_0)(x-x_0)+y_0=\frac{-4}{(x_0-1)^2}(x-x_0)+\frac{x_0+3}{x_0-1}$

$A\in (d)$ nên:

$a=\frac{-4}{(x_0-1)^2}(5-x_0)+\frac{x_0+3}{x_0-1}$

$\Leftrightarrow x_0^2(a-1)-2x_0(a+3)+(a+23)=0$

Xét PT $x^2(a-1)-2x(a+3)+(a+23)=0(*)$

Để từ $A$ kẻ được 2 tiếp tuyến thì $(*)$ phải có 2 nghiệm phân biệt khác $1$

Điều này xảy ra khi \(\left\{\begin{matrix} a-1\neq 0\\ \Delta'=(a+3)^2-(a+23)(a-1)>0\\ a-1-2(a+3)+a+23\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a\neq 1\\ a<2\end{matrix}\right.(**)\)

Hoành độ 2 tiếp điểm $M,N$ là nghiệm của $(*)$. Theo định lý Viet:

\(\left\{\begin{matrix} x_M+x_N=\frac{2a+6}{a-1}\\ x_Mx_N=\frac{a+23}{a-1}\end{matrix}\right.\)

$\overrightarrow{BM}=(x_M-1,y_M-3); \overrightarrow{BN}=(x_N-1,y_N-3)$

Để $B,M,N$ thẳng hàng thì:

\(\frac{x_M-1}{x_N-1}=\frac{y_M-3}{y_N-3}=\frac{\frac{x_M+3}{x_M-1}-3}{\frac{x_N+3}{x_N-1}-3}=\frac{(3-x_M)(x_N-1)}{(x_M-1)(3-x_N)}\)

\(\Leftrightarrow 3x_M^2-x_M^2x_N-6x_M-x_N=3x_N^2-x_Mx_N^2-6x_N-x_M\)

\(\Leftrightarrow (x_M-x_N)[3(x_M+x_N)-x_Mx_N-5)=0\)

\(\Leftrightarrow 3(x_M+x_N)-x_Mx_N-5=0\) (do $x_M\neq x_N$)

\(\Leftrightarrow \frac{6(a+3)}{a-1}-\frac{a+23}{a-1}-5=0\) (luôn đúng)

Vậy mọi giá trị $a$ thỏa mãn $(**)$ là đáp án.


Các câu hỏi tương tự
Ship Mều Móm Babie
Xem chi tiết
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết
Quỳnh Anh
Xem chi tiết
Julian Edward
Xem chi tiết
Thúy Nga
Xem chi tiết
Nguyễn Hải Vân
Xem chi tiết
Trung Ruồi
Xem chi tiết