Có \(f\left(x\right):\left(x-3\right)\) dư 2
⇒ \(f\left(3\right)=2\)
\(f\left(x\right):\left(x-4\right)\) dư 9
\(\Rightarrow f\left(4\right)=9\)
Giả sử \(f\left(x\right):\left(x^2+x-1\right)\) được thương là \(x^2+3\) và dư \(ax+b\)
⇒ \(f\left(x\right)=\left(x^2+x-1\right)\left(x^2+3\right)+ax+b\)
⇒ \(f\left(x\right)=x^4+x^3-x^2+3x^2+3x-3+ax+b\)
⇒ \(f\left(x\right)=x^4+x^3+x^2.2+x\left(3+a\right)+b-3\) (*1)
Khi đó
\(f\left(3\right)=81+27+9.2+9+3a+b-3=2\)
⇒ \(3a+b+132=2\)
⇒ 3a + b = - 130 (1)
\(f\left(4\right)=256+64+2.14+12+4a+b-3=9\)
⇒ \(4a+b+357=9\)
⇒ \(4a+b=-348\) (2)
Từ (1) và (2) ta có hpt
\(\left\{{}\begin{matrix}3a+b=-130\\4a+b=-348\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}3a+b=-130\\a=-218\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}a=-218\\b=524\end{matrix}\right.\)
Thay vào (*1) tính được f(x)
Chắc sai :v số quá to :vv