Ta thấy: \(\left|y+2011\right|\ge0\forall y\)
\(\Rightarrow VT=\left|y+2011\right|+30\ge30\forall y\left(1\right)\)
Lại có: \(\left(2x-6\right)^2\ge0\forall x\)
\(\Rightarrow\left(2x-6\right)^2+67\ge67\forall x\)
\(\Rightarrow\dfrac{1}{\left(2x-6\right)^2+67}\le\dfrac{1}{67}\forall x\)
\(\Rightarrow VP=\dfrac{2012}{\left(2x-6\right)^2+67}\le\dfrac{2012}{67}=30\forall x\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\) suy ra \(VT\ge30\ge VP\)
Nên xảy ra khi và chỉ khi \(VT=VP=30\)
\(\Rightarrow\left\{{}\begin{matrix}\left|y+2011\right|+30=30\\\dfrac{2010}{\left(2x-6\right)^2+67}=30\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}y=-2011\\x=3\end{matrix}\right.\)
Vậy cặp số nguyên \(\left(x;y\right)=\left(3;-2011\right)\)