Bài 6: Hệ thức Vi-et và ứng dụng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thanh Xuân

Tìm cách số nguyên tố p biết rằng phương trình sau có nghiệm nguyên x^2 + px - 12p =0

Nguyễn Thành Trương
17 tháng 2 2019 lúc 12:36

P nguyên tố, pt sau có hai nghiệm nguyên:
\(x^2 + Px - 12P = 0 (1) \)
Có:\( Δ = P^2 + 48P = P(P + 48) \)
Vì pt có nghiệm nguyên nên Δ phải là số chính phương:
=> \(P(P + 48) = n^2\) (n nguyên)
=> \(P + 48 = \frac{n^2}{P}\) là số nguyên nên \(n^2\) chia hết cho P
Mà P là số nguyên tố nên => n chia hết cho P => đặt n = k.P (k nguyên)
Có:\( P(P + 48) = n^2 = k^2.P^2 \)
=> \(P + 48 = k^2.P \)
=> \(48 = (k^2 - 1).P\)
=> \((k^2 - 1).P = 3.2^4 (*) \)
Do P nguyên tố nên P chỉ có thể là 2 hoặc 3.
*Nếu P = 3 thay vào (*): \(k^2 - 1 = 2^4 = 16 \)
=> \(k^2 = 17\) => k không nguyên (trái giả thiết).
*P = 2 thay vào (*): \(k^2 - 1 = 24 => k^2 = 25\) thỏa.
Thử lại: với P = 2 ta có pt:
\(x^2 + 2x - 24 = 0\) rõ ràng có hai nghiệm nguyên là: x = 4 và x = - 6
Vậy P = 2


Các câu hỏi tương tự
Thanh Linh
Xem chi tiết
Vũ Thanh Lương
Xem chi tiết
Vũ Thanh Lương
Xem chi tiết
taxxxxx
Xem chi tiết
Lê Ngọc Huyền
Xem chi tiết
Nguyễn Thị Kim Ngân
Xem chi tiết
Music Hana
Xem chi tiết
Dung Ho
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết