c) Ta có:
\(10x+23⋮2x+1\)
\(\Rightarrow\left(10x+5\right)+18⋮2x+1\)
\(\Rightarrow5\left(2x+1\right)+18⋮2x+1\)
\(\Rightarrow18⋮2x+1\)
\(\Rightarrow2x+1\inƯ\left(18\right)=\left\{1;2;3;6;9;18\right\}\) ( vì \(x\in N\) )
+) \(2x+1=1\Rightarrow x=0\left(thoa\right)\)
+) \(2x+1=2\Rightarrow x=0,5\left(loai\right)\)
+) \(2x+1=3\Rightarrow x=1\left(thoa\right)\)
+) \(2x+1=6\Rightarrow x=2,5\left(loai\right)\)
+) \(2x+1=1\Rightarrow x=4\left(thoa\right)\)
+) \(2x+1=1\Rightarrow x=8,5\left(loai\right)\)
Vậy \(x\in\left\{0;1;4\right\}\)
a) Ta có: x + 20 = (x + 2) + 18 => (x +2) + 18 \(⋮\) (x + 2) khi 18 \(⋮\) (x + 2)
=> x + 2 \(\in\) Ư(18) = {1; 2; 3; 6; 9; 18}
Vì x \(\in\) N
=> x \(\in\) {0; 1; 4; 7; 16}
b) Ta có: x + 5 \(⋮\) (x + 5)
=> 4x + 20 \(⋮\) (x + 5)
Và 4x + 69 \(⋮\) (x + 5)
=> (4x + 69) - (4x + 20) \(⋮\)(x + 5)
=> 49 \(⋮\) (x + 5)
=> x + 5 \(\in\) Ư(49) = {1; 7; 49}
Vì x \(\in\) N
=> x \(\in\) {2; 47}
c) Ta có: 2x + 1 \(⋮\) 2x + 1
=> 10x + 5 \(⋮\) (2x + 1)
Và 10x + 23 \(⋮\) (2x + 1)
=> (10x + 23) - (10x + 5) \(⋮\) (2x + 1)
=> 18 \(⋮\) (2x + 1)
=> 2x + 1 \(\in\) Ư(18) = {1; 2; 9; 18}
=> 2x \(\in\) {0; 1; 8; 17}
Vì x \(\in\) N
=> x \(\in\) {0; 4}